On pose . Il suffit d'expliquer comment
on définit naturellement la fonction logarithme, et tu
comprendras pourquoi
est
.
La fonction ln se définit (à une constante près) par la propriété:
L'intérêt de cette définition de la fonction
: on a de jolis développements en
série entière, la fonction exp, inverse de la
fonction
vérifie:
et
(c'est un
théorème).
Tiens, d'ailleurs, on peut aussi décider de
définir d'abord la fonction . Les
théorèmes deviennent des définitions et les
définitions deviennent des théorèmes: